Bio-inspired construction materials
Construction industry used about 40% of raw material by weight in 2009, and the amount of material usage in construction industry is increasing rapidly [1]. As construction material accounts for a large portion of the entire used material, a little improvement in construction material could give a huge impact.
Many researchers have been conducting research on bioinspired materials as they are sustainable, efficient, and even performs better than many of conventional man-made materials. Some examples of biomaterials and bioinspired construction materials are: biotech concrete incorporating ureolytic bacteria, self-cleaning materials inspired by lotus leaves, tough materials such as spider silk and nacre shells, and adhesives such as mussel byssus and barnacle cement [2].
In-vivo Raman spectroscopy in biomaterial studies
Biomaterials are synthesized and modified within a living body. Researches should be conducted in in-vivo conditions in order to observe the changing chemistry within the body. The significant benefit of Raman spectroscopy is that it could be used on living body with the least damage on the samples as it requires no sample preparation [3].
[1] Fridolin Krausmann, Simone Gingrich, Nina Eisenmenger, Karl-Heinz Erb, Helmut Haberl, Marina Fischer-Kowalski, Growth in global materials use, GDP and population during the 20th century, Ecological Economics, 15 August 2009, 68(10):2696-2705.
[2] F. Pacheco-Torgala and J.A. Labrinchab, Biotechnologies and bioinspired materials for the construction industry: an overview, International Journal of Sustainable Engineering, 2013.
[3] R Krishna, T.J. Unsworth and R. Edge, Raman Spectroscopy and Microscopy, In Reference Module in Materials Science and Materials Engineering, Elsevier, 2016.
Comments